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A POSTERIORI ERROR ESTIMATION

1. Preliminaries.

Let V' be a real Hilbert space and a :

“NEW” APPROACH

PATRICK J. RABIER

V" x V" — R a continuous bilinear form. It is a

more or less standard result that if a satisfies the conditions | | ‘ ’ . - *
(v,w) o ¥
a{v, w e ]
(1.1a) inf sup——m—— > ¢ >0, J , '
w20 o el Te] R
where ¢ is a constant. and BVA R
Dt iy -
(1.18) {ar.w) =0, Vo eV} b uw=0 LT T
Avatabilty Coges
theu there is L ¢ GL(1"). unique. such that Dist AVdi‘l 'd'. or
Special
(1.2)

a(v,uw) = (Le,w),
A-(

and hence given ¢ € V', there is a unique solution u € V' of the problem

(1.3)

alu.r)y=Ffr), Vrel.

Indeed. existence of L ¢ £(V7) in {1.2) follows from the Riesz representation theorem,

and (1.1a) easily implies that L is one-to-one with closed range. Next. from closedness of

rge L and the relation rge L = (ker L*)*. and since condition (1.1b) implies ker L* = {0},

we infer that L is onto V.ie. L € GL(V') by Banach's theorem. Next. if ¢ represents ( via

the Riesz representation theorem, that is, {{r) = (¢g.r). Vv € V| v = L™ '¢ is the unique

solution of (1.3).

-

Pl




Conditions (1.1a/b) include, but are not limited to, the case when a satisfies the hy-
pothesis of the Lax-Milgram lemmia

From now on, we assume that VV = H)(Q) where 2 C R" is a bounded open subset
with Lipschitz continuous boundary T.

Let (Qx icn<n be a collection of open subsets of Q with Lipschitz continuous bound-
aries I'y, and such that Q, NQ; =0 if A # L and h(zlﬂ;\- = 2. For convenience, we
shall refer to (24) as a “partition™ P of Q.

We shall denote by T the set of pairs (. L) with & # L such that meas (T', "T'z) > 0.

Here, “meas” refers to the ['j; —, or equivalently I'g — Lehesque measure. Also, we set
In={1<L<N:(KL)el}, 1<K <N,

and

The =Tkl WK, L)el.

Let T'z be the disjoint union

Iy = H Tnu

(K.1)ez
(hence, in 'z, Ty and 'Ly are different although they coincide as subsets of R").
We introduce the space

LYT7)= I L¥Txy).
(K.L)el

Elements of L%(I'z) thus are collections A = (A, ) with Axr € L4 ). Note that the
functions Ay p and Apj are generally different. despite the fact that they are both defined
in the same subset T ATy of R".

It is clear that there is a canonical identification
B 'N' .
ATy = [ LATAT)
obtained by associating with A = (A, 1) € L¥(T7) the collection (A, ) defined by

Matry, =Ake. VL €Iy,
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and vice-versa.

In future considerations, it will be convenient to use hoth notations (A r) and (A;) for
elements of L}(T'1). No confusion should arise from this since the number of indices used
immediately identifies which definition of L?(T'7) is being used.

The norm of L3(T'7) is the natural one. namely

1/2 N 172
|f\|o,r,=( 3 |'\I\'L|g‘r,.~,_) =(Z|f\l\'|g‘r\rx) :

(h.L)ET =1

We shall also consider the spaces
Vi ={en € H' ()i vy =0 in TNT L}
with norm induced by the norm of H'($2 ), and their product
HP = T,
o(p) = K= K

equipped with the product norm. denoted by || - |1 ».

Elements V" of H}(P) can be viewed as N —tuples (173} with vy € 1 or as functions
in § (defined almost everywhere) such that vy = Uy € 1. Both points of view will be
used later, and once again no confusion should arise from this.

A restriction map (trace) is defined:
ve H)(P)—s (vx, )€ LA(T7),
K\

which is evidently continuous for the norm of the spaces involved.

There is a canonical embedding
Hy(§1) — Hy(P)

defined by 1 —— (v} ) where vy = Ul - On the other hand, the space L¥(I'7) can be split
into the direct sum

L¥T7)= Ay DA_,
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where
Ay ={(Tpe): Ty =Typn, YIN.L)€ I}
and

Ao ={(Cxe):Thp=-Tiw, WR.LYET}L

The following resalt characterizes the element of H}(Q) among the elements of Hj(P):
Proposition 1.1: Let v = (v4) € H3(P). Then, v € H}(Q) if and only i“""lr,.-\r) € A4,

Proof: If v € D(Q) and vy = vy, . it is obvious that vy, =y, Jie fey, )€
N L% 3 Tt Fy\F
A+. By denseness of D(Q2) into HM{Q). continuity of the trace H}(P) — L*(T1) and
closedness of A, in L*(I'7), this relation extends to the whole space H}(Q).
Conversely. we have Hl{P) < L%} in the obvious way. and for ,» € D(Q?) and v €

H}(P), we have

v Be. B fon
(all,«P)— ("-aI' = 'Z%Lkl'l\a_j~'§/5;? —l\g‘[“w\vw\..

where vy = (Vg - W q) v the outward unit normal vector along 'y, Since ¢ = 0 on
I'. we find
N
Y [ o= X[ e,
K=17Tk (v.Lyer’rxe
and the terms fr“ vpypvy, cancel out from the hypothesis vy = vy on Ty since vy, =

—vy,. It follows that
(i ) = 3 Iew
ar," "' T Fon [ Or, v
i.e. Or/Bz, is represented by the L2(§) function defined by dvy, /81, in Q. 1 < K <N,

N
Thus. v € H' (). and since v =0 in "_Lll(l",\ AT) =1, we have v € HJ(Q). O

2. The space A_.

N
Every element A € A_ can be viewed as an element of (Hy(P)) = ,Illl',’\ via

hi

(oud = / A
,‘z,:,r,.v\r
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note that

(2.1) (Aw) =0, Vw € H}(D). VAeA_.

N
Z/ Apwy = / ARy,
K=17YTK\T Cxe

and the terms fr“ Apwy and fr“ Apwy, cancel out because wy = wy on Ty (see

(K,L)ET

Proposition 1.1) and Ay = —Ap on Tpp if A€ A,

_ N
Definition 2.1: The space A- is the closure of A_ in (H}(P)) = '\11]",’\-.
By definition, every A € A_ is the limit in (H}(P)Y of a sequence X € A_. Since

{M,w) =0, Y € H{(Q) from (2.1). we obtain by continuity that
(2.2) (Aw) =0, VA€ A_, Yue HI(Q).
Let A = (a,y) € (L=(Q))"*" and let H} ,(Q) be the subspace
H4(R) = {v € HyQ): V- 4Ve € L)},
equipped with the norm

felhan = (lelll g + 19 - AVe[5 )2

Proposition 2.1: The mapping

By
v € D() —s (a:—') =(AVrvy, vp )€ A
A

(where vy = L 1 < K <€ N) can he extended as a linear continuous mapping from

H} () into A_.

T e Y SR
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Proof: It is plain that (8vx /Ova) € A~ as soon as v € D(). In addition, by Green's

formula,

/ %l""\ =/ Vg - Ve +/ V- (AVrp ey Ve € Vi
rx ova Qa Qn

Thus, adding up these relations, we find

1((5) 15 Clelna Tl o, v € (P
A

where C > 0 is a constant depending only upon 4. Hence,

n(%) e < Clivlliam. Ve e D(R),
A

where || - |..p denote the norm in (Hj(P)). That (dvy/0174) can be extended as an
element of A_ for v € H; 4(R) follows from this inequality and denseness of D(Q) into

H{} 4(9) (for the }f - |, 4.0-norm) by standard arguments. O

R N _
Remark 2.1: Because A_ C (HJ(P)) = l_llll'," . elements of A_ are N-tuples A = (A1)
with Ax € Vj but unlike elements of A_, they cannot be identified with collections (Ax )
for (K,L) € I (since elements of 1} are not functions, they cannot be restricted to

subsets). O

3. Application to error estimation in linear problems.
In addition to the coefficients 4 = (a,,) € (L™(R))"*" of the previous section. we also

consider b = (b,) € (L>™(f2))" and ¢ € L>(N), and set
a(v.w) = / AVe  Vw 4-/(1) Volw + / cow, Ve.w € H&(Q).
1] Q it

We shall henceforth assume that «(-.<) above satisfies the conditions (1.1a/h). Among
other things. this ensures that given f € L¥(Q). there is a unique solution u € H () of

the problem

a(u.:-):/fv. Ye € Hy ().
[
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QObserve that u solves the PDE
(3.1) -V - (AVu)+ b Vut+cu=f infl,

whence V- (AVu) =b-Vu+cu - f € L} Q). ie. u € H({.A(Q).
For 1 <K < N, let ap : Vi x Vio = R be the {continuous) bilinear form

ah‘("!\v"'h)=/ AV, Vg +/ tb-Vephwy +/ cepwp. Yeg wy € Vi
Qx Nk Ak

We assume that each bilinear form ay satisfies the conditions (1.1a/b), so that given

4 € H}(Q) the problem
(3.2) an(@n.vn) =/ fen = ap(ie.v) + (Ap.vn), Yop € Vi
Ux

has a unique solution ¢x(An) € Vi for every Ay € V.. In particular, given A = (M) €
A, there is a unique ¢(A) € H(P) such that &, = ¢p(Ag) solves (3.2) for 1 < K < N
The following theorem shows that the error v — it is characterized by a property of ¢{))

holding for one and only one A € A_.

Theorem 3.1: The following conditions are equivalent:

(i} #(A) € Hg(92),

(1) (Sr (AR )p,r) € Ay,

(ill) ¢(A) = u — 4.

(iv) A = (Quy /Bva).

Proof: For (i) & (ii). see Proposition 1.1. Before proving that (i) « (iil) & (iv). let us

note that from (3.1) and Green's formula. we have

Quy
vn = aplien) — (=2 ep ).
nkf' I ! (a‘//‘ en)
where Quy /Ova € Vi vanishes in HJ(Q) (the validity of Green's formula above is due

to u € H} 4()). By substitution into (3.2). we get

1]
(3.3) ap(op{Ap) ) =ap(u—drg)+ (Ap — %J‘l\)- Ve € V),
A

d




and hence
N N N duye
ap{ontAn)vp) = ap{u—urp)+ {An - =—.va), Vv € HI(P).

(i) = (iii): Choose v € H3 () in the above relation. From (2.2) and A (Quy, /0v4) € A_.

it follows that

N N
Y an(entArlrn) = 3 anlu—ivy). Ve e HiQ),
K=} h=1

But u ~u € H} () and ¢(A) € H} () from (i), so that the above equality reads
a(¢{A).v) = alu —a.v). Yo e HIQ).

i.e. ®A) = u - u since a(-.-) satisfies (1.1a/b),
(i) = (iv): H o{A) = u — u, then op (M) = (u — ﬂ)|nk and (3.3) yields

0
{(Ap — &.r;\) =0. Ve € VA, 1<K <N
Ovy

As artesult, Ay = Quy /Ovs (equality in Vi), 1 S K < N ie. A = (Qup [Ov,).
(ivy = (1) If A = (Quy fOva). then Ap = Guy fOra, 1 € K < N, and (3.3} shows that

®n{Ay) is characterizeed by
ap(dn(Ap) v ) =aplu —uvp), VYou € V.

But certainly o (An) = (u - ;}),nk satisfies the above relation, and lience is the unique

solution of (3.3). This shows that ¢(A) = v - € H}{(Q). O

Corollary 3.1: The functional

AeA— TN =5 Y den(An) = oy,
{h.LyeT

h>L

(52 8o
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has the umque minimizer A = (Ou ) /Ov ). for which o(A) = u - 4.

Proof: From {iv) = (ii) in Theorem 3.1. we have J{(Ou, /Or4)) = 0. and hence ) =
(OQun /Ov4) is a twramizer of J since J > 0. This also shows that J(A) = 0 for any
minimizer of . but then A = {Quy /Ov,) from (ii) = (iv) in Theorem 3.1. Thus, A =
(Oup /Jva) is the unique minimizer of J, and ¢(A) = u — & by (iv) = (iii) in Theorem
31. O

Corollary 3.1 suggests a strategy to calculate the error v . by minimizing the func
tional J in (3.4). It is important to notice that the functional J is quadratic. More

specifically. denote by J5 € 1} the (unique) solution of
ap(Jp.re) = fra —aptivg). Ve € Uy
Wk
and let ' € L(V .V} ) be defined by
aplUnrgvn )= (vjovn). Ve €V Veg e V.

Then, op (AR V= UpAp + 30,1 < K < N.for A€ A_. and

1 . . . . .
JiA) = Z {K;"A;\ _(-I,ALlél'x,+2/ (UkApn —Up A Widn — d30) + |34 _UL'(I).I
(h.L)er The

h>t

21

that is.

1 - . . 1
13.5) Jl\i*;r’(\.\)* E / (l;\xl‘-l‘_\[_)(.f;\—.f,)+; E I"l\_-il|(z)r.,~
= LY

TN RAl Tin el
AL

where. for Ay € A_ we have set

A ) = Z / O, - UMl - Uphy)
thtier’iat

h>L




Lemma 3.1: The bilinear mappiug o is an inmer product in A-.

Proof: It is obvious that o is bilinear and symmetric. That a{A, A) = 0 = A = 0 follows
from {ii) = {iii) in Theorem 3.1 for the special case when { = 0 (hence u = 0) and & = 0
in(3.2). O

The norm in A_ induced by the inner product a( .-} will henceforth he referred to as
the “o-norm”. It is easily seen that A_ cannot be complete for the ¢-norm. and hence we
shall call A% the completion of A for the #-norm. From the trace theorems, there is a

constant C > 0 such that
oA MY < C Afep., YAEA,

i.e. the o-norm is weaker than the || - {ja » norm in A_.

Theorem 3.2: The functional J is continuous and coercive in A equipped with the
a-norm. As a result. it can be extended as a continuous aud coercive quadratic functional
in A2 with the same minimum value (that is. 0). In particular, A = (Juy /v ) remains

the unique minimizer of .J in A?.

Proof: Continity and coercivity of J in M. for the o norm is trivial from (3.5). That
it can be extended to A? with the same minimwm value is also trivial (using denseness of
A inits completion A%). Tt thus remains nonnegative and has a unique minimizer in A%,
and this minimizer must be (Jup /Ova) since J({Buy, [Ov4)) = 0. O

We now face the key problem in following the above approach: In practice, the minimizer
(Fup [Ova) of J will be obtained via minimizing sequences A € A% . By denseness of A_
in A%, such sequences cani he chosen in A {and even in A_ by denseness of A_ n A_).
and for each index ; we obtain an element (M) € HJ(P). It is easily seen that o{))
need not approach u ~ 1 in HE (P} as ) tends to 5. This is related to the fact that the

a-nora s too weak to ensure continnity of the bilinear form

N
fArye N « HiP)—— Z(A,\,:-,\)

o=\

¢
¢

>



when A_ is equipped with the o-norm. Thus, in practice. uninimizing the functional J using
minimizing sequences (the only possible option snce (duy /v 4) is of course unknown) will
not necessarily provide the desired result, i.e. will not yield an approximation on u — t in

H}(P). Fortunately, this difficulty can be overcome because of the following result.

Theorem 3.3: Suppose that u € H*() for some s > 3/2. Then:

(i) There are minimizing sequences (A’) of J such that A € A_ and (M) is bounded in
A_ (that is, bounded in L*(T'7)).

(1) If (A?) is a minimizing sequence of J such that A7 € A_ and (A} is bounded in A,

we have

lim {lo(A) = (u = @)Ly p = 0.
)—oc

Proof: If u € H*R) for s > 3/2. then Jup /vy € H* 3 (Tp) C LATH), 1 < K <
N. Thus, in particular, (Buy/Bvs) € LEHT7). Also. if v € C®(). it is obvious that
(Oug /Bv4) € A, and this relation remains valid for u € H*(Q)(s > 3/2) by denseness of
C>=(Q) into H*(Q). continuity of the mapping v € H*(Q) —— (Ovy /Ov4) € L¥(T1) and
closedness of A_ in L*(I'z). Existence of minimizing sequences (A’) with A € A_ and
(A7) bounded in A_ follows at once from this result (choose e.g. A\ = (Quy /B 4). V).

Next, let (A7) be any minimizing sequence of J such that A’ € A_ and (A?) is bounded in
A.. By compactness of the embedding L¥(T'x \T) — Vi, thereis A € (H{(P)) = l\ii]",'\
and a subsequence (A*) such that x“-.n;o”Ah = AMlap = 0. Thus, A € A. by definition
of the space A_. Since the functional J is continuous for the o-norm (see Theorem 3.2).
hence for the stronger || - |l. » norm. we have J(X) = ‘Iﬁx;.l( A%, so that A minimizes J.
It follows that A = (Qup /Ov4) (see Theorem 3.2).

The above revials that (duy /Di-4) is the unique cluster point of the sequence (M) iu
A_. so that the whole sequence (M) converges to (Juy /dr4) in A_. This amounts to

saring that A} tends to Suy, /v, in 1}, for every 1 < K < N Now. from (3.3) we have

. Ay .
ap(Sp(A)) - (- d)vp) < M~ E/’: lestallenllinp. Yon € Vi

11




Taking the supremum over vy € Vi, flvi|li.0x < 1. 2nd using the fact that ax (-, -} satisfies

the conditions {(1.1a/b), we get
. Sug
lon(Ah) — (u = iy < Cliry - E’jll-.nx‘

where Cp. > 0 is a constant independent of j. Thus,
N 1/2 N Bun 1/2
A2 K2
(glwkua) —(u- u)lll,n,() < C(hzjzlux'x - Eu..nx) .

. = - . ) . P y_ [ )
with C |$‘§%{NC’;\ . and the right-hand side is just C||A (#) [ler and hence tends
to 0 as ) tends to oo as noted earlier in the proof. 0O

By a method of proof similar to that of Thoerem 3.3. we obtain the following result

without any extra assumption of regularity for the solution u:

Theorem 3.4: (i) There are minimizing sequences (A} of J with A € A_ and (A7)
bounded in A_.

(i1) If (M) is a minimizing sequence of J such that A’ € { and (A?) is bounded in Q.
we have

)li.n;oiw(,\’) —(u—u)ll,p =0.
N
for every 0 < r < 1, where || - ||, » is the product norm of the space H™(P) = AILH'(Q;\ ).

Proof: (i) is trivial by considering the constant sequence (Jup /9v4). (ii) Let (A7) be a
minimizing sequence in A_ which is bounded in A_, and let A be a cluster point of (A7) for
the weak topology of A_, (A_ is a closed subspace of the Hilbert space hﬁ[l'k). If (A7)
15 a subsequence tending to A, we still have J(A) = klin;o.](/\“) = 0 because J is convex
and continuous for the ||-|l.» orm, hence weakly lower semicontinuous. Thus, once again.
\ = {Buy /Ov4) and the whole sequence (V) tends weakly to (Quy /Ov4). At this poiut,
note that together with this result. (3.3) implies that ¢ (2} ) tends weakly to (v — t})l“x
mVy I Lp € GL(Vy) is defined by

ap(vp.wg) = (Lyvpwn) Yop oy € Vi,

12
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where (-,-) denotes the inner product of H'(Q2x). we have ¢p (M) — (u = 4)(o, = Lrgk
where g} € Vy is defined by
Dup .
(gh.vn) = (A - -aTA"!'l\’)» Ve € Vi

That g} — 0in Vi follows from A} — Qup /@va — 0in V] and hence 61 (M) = (u—i)y,
by continuity of L.

The theorem now follows from compactness of the embedding H™(Q4) — H'(Qy) for
0<r<l,1<K<N. DO

The practical aspects of Theorems 3.3 and 3.4 is captured by the following corollary.

Corollary 3.2: Let B C A_ be any closed ball such that (Ouy /0v4) € B. Then. B is

closed in A2, ;xeli;J(A) = inf J{A) and if M € B is a minimizing sequence of Jj,, we have
AEA”
lim [[¢(M) - (u = id)|l.p =0,
y—oo

forevery 0 <r < 1.
Furthermore, if u € H*(Q) for some s > 3/2 and B C A_ is any closed ball such
that (Qup /Ov;) € B. then B s closed in I\Z.’\il;lg.,(/\) = Air}\f J(A) and if A € Bisa
2 €A’

minimizing sequence of J,, . we have

Jim [[(A) — (x — )l 7 = 0.

Proof: That B is closed in A% follows from weak compactness of B in its ambieut space:
KA eBand M — A€ A% in A%, let g € B he such that M* — g in A_ or A.. Iu both
cases, this implies M* — i in A7 sinc~ the embeddings A_ — A . — A% are continuous.
whence 4 = A and A € B. That the infimum of J is the same in B and in the whole space
A? is trivial from (Juy /Ov) € B being the unique minimizer of J in Ac. Convergence of
¢(M) to u — u follows from Theorems 3.3 and 3.4. O

In practical applications, the hypothesis that some ball B containing (Qupn /0va) is
known is not a severe limitation since some useful information can bhe derived from the

approximate solution 1. See Section 4.

Y YO
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4. Practical Aspects.

In practice, the appoximate solution u will be a finite element approximation u* €
VX where V* is a finite element subspace of H}(S) and the partition P corresponds to
the partition of Q into elements. It is certainly not restrictive to assume that u" is a
“reasonable” approximation of u. as opposed to a completely random element of V*, and
hence that despite the fact that ||« — u*||; o may not be small, or small enough, still
the derivative (uf./Ova) gives some idea of where in A_ (or A_ if u € H* (), s >
3/2)(8uk /Bu4) is. One problem is that, in general, (Su? /3va) ¢ A_. but this is easily
remedied by replacing (8u./8v4) by say, (%‘:),/2 = (J(Bud /Bva — 82 /0v )k Lyer-
Other weighted averages, as suggested in | ] can also be used.

The ball B of Corollary 3.2 can be chosen as any ball with center (0u/0v4),;; and
arbitrary radius R > 0. Because of denseness of A in A_ and A?. finite-dimensional ap-
proximations of the space A% can be obtained by choosing a scale A’ of finite-dimensional
subspaces of A_. One possible choice is given by collections A = (A ) such that Ay, is a
polynomial of degree < j on each face of Q- not lying on the boundary of . It should be
kept in mind that membership to A requires the condition A K, = -A Ligg, " and hence
Ay and A, cannot be chosen independently. Because no continuity condition is required of
Ap at the intersection of two faces, bases for such spaces are easily found. For instance. if
J = 0. a basis is given by the collections (Ay ) where A = 0if (K. L) # (Ky.Ly) where
{Ko.Lo) € T satisfies Ko > Lo Apyr, = L ALon, = —1, letting (g, Lg) run over all such
pairs. It should be clear how this procedure can be extended to obtain bases for arbitrary
polynomial degree ;.

One may then define A’ to be the minimizer of J in BN A’ a closed convex subset of
AL. The sequence (A’) is a minimizing sequence for J in B. and hence the conclusion of
Corollary 3.2 regarding convergence of (A7) to v — u*(= u — i here) applies. Rather than
minimizing J in BN AL ~ 0 a constrained problem — it seems advisable to minimize J
in .\ (a linear problem) and check whether this minimizer is in B. and modify the choice
of the minimizer only if this is not the case (i.e. the minimizer is unreasonably far from
(Bul /Ova) 1 2)-

Naturally, replacing A~ by a finite dimensional approximation A2 is not enough, since

4
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¢(A) cannot be calculated exactly. However, since ¢(A) = (é(Ax')) is obtained by solving
independent local problems, numerical approximations can be obtained at a low cost with
high accuracy. In other words, the error between ¢(A) and its numerical approximation may
be considered negligible when compared with ||u ~u*{|; q. and hence the convergence result

of Corollary 3.2 may be used safely with o(A) replaced by its numerical approximation.

Remark 4.1: When the spaces A’ are those previously described, i.e. their elements are
collections of polynomials with degree < ; on the interfaces, it is desirable that the space
chosen for the approximation of ¢x(Ax) when A = (Ax) € AL, contains the polynomials
of degree < j + 1 in Q. Indeed, Ay is used to obtain an approximation of Juy /04
whereas ¢ ( Ay ) represents an approximation of (u — "A)Inxv and hence polynomials with
degree at least ; + 1 should be used to approximate ¢x(Ax) for consistency (assuming
A = (a,,) essentially constant ou each element). The above considerations also show that
J + 1 should be at least equal to the degree of the polynomials used for the calculation of

u*, which comes as no surprise. O

5. Nonlinear problems.
Let a(-.-),an (-, ) be the same bilinear forms as in Section 3, andlet F:  x R — R
be a mapping such that F(-,-) is of class C'! for almost all r €  and F(-,y) is measurable

for every y € R. We also assume that there are constants 3 > 0,7 > 0 such that
IDyF(z.y)l < 8 +9lylP~?

for almost all r € 2 and every y € R, where p > 2 is a real number satisfying p < 2% if

n > 2. This implies that the mapping
F.uel”Q)= Fluye L () (p* = p/(p - 1))
defined by F(u)(r) = F(r,u(r))is of class C'' with derivative

DF(u}h = D F(z.u(s)h(z).

15
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It then follows from Taylor’s formula that
|F(u) = F(v)|o.pea < C((meas Q)% + v(lull;% + o555 = vlopa.

for every pair (u,v) € (L?(R2))?, where C > 0 is a constant independent of u and v.

This shows that if u* € V* is a finite clement approximation of u € H}(f2) such that

A
. . Ju—utlosa
lim flu — u® =0, | '___'L_—_
e e - Y Py e

we have

{5.1) 1F(u) ~ F(u")lppe.0 < elh) Jlu —u*llq,

with lime(h) =0.
A—0

Suppose now that u solves the problem
a(u.n)+/P(u)v.—./fp , Vve HIN),
Q 4]
ie. u € H)() and
—V~(AVu)+b<Vu+cu+F(u) =f inQ.

In analogy with what was done in Section 3, let A € A_ and solve, for 1 < K < N,

Nk Mk

{ ap(on(Ap).vR) = / frw —an(uh o) - FuMyer + (Akoop)

Vo € V
that is,

N N dur
AdniAn).vn) = anlu — u. va - LESTIN _ UK
(5.2 Iai\(c)l\()u\ Jovp) =an{u—u vp)+ "k(F(u) F(u"))rp + (An 31/,;‘”‘)

) lVl‘,“ eV

I~

A\ - I

(2
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By the method of proof of Theorem 3.1, it is easily seen that the only case when ¢(}) =

(¢r(Ax)) € HJ(S) is when &()) coincides with the solution y* € HI(Q) (not V%) of
(5.3) alwh,v) = af(u—ut) o)+ [ (Flu) = Fubhe, vo e B(@),
0

and that if so, Ap = (y* + u)x/Ovs.1 < K < N. In fact. in terms of v'* above, (5.2)

reads
At +ut)y .
= T2k

an(@n(An)vr) = ap (vt vn) + (A - Eo V)

Yo € Vi
This relation can be used to show that if (A7) is a minimizing sequence of the functional J

of Section 3 (which now has unique minimizer ({¢" + u® )1 /8v4)) and if (V?) is bounded

in A_, then
(5.4) lim [[¢(A7) ~ vl p = 0.
J—oc

(And if (M) is only bounded in A_,

lim l6(A) = v*|l,p =0 , WOST<1)

P Rad=
To obtain an estimate for [|¢(A’) — (u ~ u*)}}; p, write
(5.5) N8(N7) = (u = u) e < Ne(A) = wtilie + I(u = ub) ~ v 0.

From (5.3),
al® - (u=uh)v) = /(F(u) - Flu" e,
1]

Taking the supremum over v € HJ(Q). ljvfli o < 1 and using the fact that a{-. ) satisfies
(1.1a/b), we get

allyh - (u - w1 a < sup /(f’(u)—f(u"))v.
2

vl a <

17
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where ¢ > 0 is a constant independent of u and h. Next, using lfn(f‘(u) ~ FuMp| <
|F(u) = F(uM)o 5+ alvlo pn and continuity of the embedding H3(Q) — LP(), we obtain

I¥* = (u = v )ha < CIF(u) = F(u*)lope 0.

where C > 0 is a constant independent of u and h. Finally, using (5.1) we see that
% = (u = uh)ia < Celh)llu ~ u*ili0-
Substituting into (5.5), we get
I8(A) = (u = uM)l1p S (W) = v*lap + Ceh)u = u*|10.
and. in particular, if (5.4) holds:
(5.6) Jlim fl¢(V) = (u = wh)llip < Celhlu - u*hr.a,

i.e. |w(M) = (u — ut)|); p becomes negligible with respect to |ju — u?||, o when 8(A)is a

good enough approximation of §* because zin:] e(h) = 0.

Remark 5.1: From (5.6), it also follows that u* + #()\?) is a better (enhanced) approx-

h

imation of u than u®. Interestingly, this enhanced solution is obtained by solving only

linear problems (calculation of ¢(A)). O
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